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Efficient calculation of actions 

H R Dullint and A WitteQ 
Institut fiirl’heoretische Physik, Universitlt Bremen, Postfach 330440.28 344 Bremen, Germany 

Received 7 July 1994, in final form 19 September 1994 

Abstract. We present a method to calculate numerically the action varlables of a completely 
integrable Hamiltonim system with N degrees of freedom. It is a construction of the Liouville- 
Amol’d theorem for the existence of tori in phase space. By intmducing a metric on phase space 
the problem of finding N indepeodeot irreducible paths on a given toms is turned into the problem 
of finding the lattice of zeros of an N-periodic function. This function is constructed using the 
flows of all constants of motion. Using the fact thal neighbouring tori and their irreducible paths 
are related by some continuous deformation, a continuation method is constructed which allows 
a systematic scan of the actions. For N = 2 we use a Poincad surface of section to define 
paths which cross neighbouring tori, Close to isolated periodic orbits the generators are either 
constructed explicitly or their asymptotic behaviour is given. As an example, the energy surface 
in the space of action variables of a Hamiltonian showing resonances is calculated. 

1. Introduction 

The Liouville-Amol’d theorem proves that action-angle variables can always be found 
for completely integrable systems. In practice it can be very hard to do the necessary 
calculations, e.g. for the Kovalevskaya top this has not been achieved for 100 years. It 
might not be worth the effort doing a long analytical calculation to obtain the action-angle 
variables, but the energy surface in the space of action variables can be considered the most 
concise and comprehensive representation of the global dynamical properties of the system. 
We therefore want to calculate this surface by numerical methods which also work when 
analytical manipulations would be unmanageable. 

For a system with one degree of freedom the action integral is calculated by integrating 
along the orbit, which is always closed if it is compact. The case N = 2 with a compact 
energy surface is our main interest in this paper. Systems with more than two degrees of 
freedom that are separable except for two freedoms can also be treated like N = 2. If 
the system is completely separable the calculations are as simple as for one freedom. For 
a generic integrable system with N 2 2 the problem in calculating the actions is to find 
N independent irreducible paths around each torus. In the past some numerical algorithms 
have been devised which try to determine these paths for N = 2 , 3  using phase-space 
projections or Poincare surfaces of section which work for Liouville ton as well as for KAM 
tori (see, for example, Noid and Marcus [IO] or Knudson and Noid 1111). We present a 
method which is much more efficient for integrable systems and also works for any number 
of degrees of freedom. 
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The main idea in the calculation of actions is to use the flows generated by each constant 
of motion. At every point these flows give a local coordinate system. The goal is to find 
a coordinate transformation from the local coordinate systems to one global coordinate 
system where each coordinate line corresponds to going around one irreducible path of the 
torus. The flows corresponding to these coordinate lines can be constructed from a linear 
combination of the original flows of the constants of motion. This combination is given by 
a matrix of ‘mixing coefficients’ which have to be determined. In fact, the matrix entries 
are the coordinates of the generating vectors of a lattice, each of its cells corresponding 
to one copy of the torus. The task is to find the generators of this lattice. To solve this 
problem numerically we introduce a metric on phase space, which allows us to construct 
a multiply periodic function on that lattice whose zeros correspond to the corners of the 
cells. Once the lattice is determined, we have (i) a way to calculate the actions for the 
toms going around its irreducible paths, (ii) the frequencies of the Hamiltonian flow and 
the winding numbers, and (iii) an explicit parametrization of the torus which can be used 
for visualization. 

We proceed as follows. First we recall the definition of a completely integrable 
Hamiltonian system giving some intuitive interpretations. In order to introduce our method 
and the notation used, it is necessary to give a sketch of Amold’s proof [I] of the existence 
of tori for completely integrable systems (see also Ozorio de Almeida 121 whose geometric 
discussion inspired this work)-this is done in section 3. The method itself is then described 
for the general case of N freedoms. The discussion of some special features of calculating 
energy surfaces for N = 2 follows, and finally we apply our method to the Walker and 
Ford Hamiltonian [3] with a 2-2 resonance. For this system the actions are also calculated 
by standard methods and compared to our results. 

Our motivation in developing this method was the study of the energy surfaces of 
integrable spinning tops. For the cases of Euler and Lagrange this has been done analytically 
[4]. For the Kovalevskaya top this task is considerably more difficult. We have included 
some illustrations from that system, to which the method has been successfully applied, but 
the whole picture is presented in [5 ] .  The complicated shucture of phase space in that case 
deserves some special attention. 

2. Completely integrable systems 

Since our method follows the lines of the proof of  the LiouvilleAmol’d theorem, we 
review it briefly, beginning with the definition of a completely integrable system. Consider 
a Hamiltonian system with N degrees of freedom and canonical variables (q,  p )  =: x in 
phase space P, dim? = 2 N ,  with a time-independent smooth Hamiltonian H : P -+ R. 
The time development of this system is govemed by the system of differential equations 

where V is the gradient with respect to x and 1~ is the N x N identity matrix. By ‘U” we 
denote the Hamiltonian vector field and by gh the corresponding flow. For any two smooth 
functions F;: : P 4 R, i = 1.2, their Poisson bracket is defined as 

( F , ,  F2) := VF,JVFZ (2) 

F = VFj: = VFJVH = ( F ,  H). (3) 

so that the time evolution of any function can be written as 

A Hamiltonian system is completely integrable if the following conditions hold. 
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Figure 1. This figure (as well as figures 2 and 3) has been obtained from the Kovalevskaya 
top. It shows projections of the flows of the Hamiltonian (lek) and the Kovalevskaya constant 
of motion (right) covering the same torus. The orbits can also be viewed as the coordinate lines 
of the ( rx .  1H) coordinates on the torus. Obviously they do not generate a global coordinate 
system, although the flows are in lhis case almost 'orthogonal' on the toms. Expressing these 
flows by linear combinations of the ones shown in figure 2 corresponds to a transformtion to 
action-angle variables. See figure 3 for the preimages of these lines in W2. 

(i) There are N smooth constants of motion Fi, i.e. (Pi, H) = 0, i = I , .  . . , N .  
(ii) The Fi are in involution, i.e. [ F , ,  4 }  = 0. 
(iii) The Fj are independent, i.e. rank(VF1 . . . V F N )  = N almost everywhere. 

The corresponding c = (q. . . . , C N )  = F ( z )  is called a critical value. The set 
A point I in P is called a critical point if rank aF/ar l ,  < N ,  where F = ( F , ,  . . . , FN). 

Mc := 12 E PI F(r) = c} (4) 
is a manifold if c is not critical, since the tangent space of Mc then has dimension N at 
every point. If the VF, are linearly independent, so are the JVFi. As the gradient is 
perpendicular to M,, and VFi . JVFi = IFG, Fi] = 0, the N linearly independent vectors 
JVFt give a local coordinate system (they locally span the tangent space). 

The first condition merely states that a constant of motion is to be invariant under 
the flow gh, generated by the Hamiltonian. Mc is invariant under the flow of H because 
the Hamiltonian vector field is always perpendicular to all the gradients: VFj . v~ = 
VFjJVH = { F i ,  HI = 0 by assumption. This is a geometrical interpretation of the 
Poisson bracket. 

The second condition requires that every constant of motion is invariant under the flow 
of every other one. The flow generated by Fi is denoted by gi and corresponds to the 
vector field vi := JVF, = dgj/dtl,,o. So in the above argument we can replace H by m y  
other constant of motion. It turns out that this is the main ingredient of the proof and of 
our application to calculate actions (see figure 1 for an illustration), although it might seem 
strange to look at these flows because they have no physical meaning. Condition (ii) has 
yet another geomemcal interpretation that is just as important: the Lie bracket of any two 
of the above vector fields is zero, [vi, vj] = 0, which can be deduced from (F,, F.) - 0 

1 .- using the Jacobi identity. Thus the flows commute, i.e. gig; = gJgf--see [l] for details. 
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Finally, the third condition requires that the critical points of F : P -+ I W N  have measure 
zero. We have already used this in order to establish that for the generic non-critical case 
Mc is a manifold of dimension N. The condition makes sure that there are regions where 
M, changes smoothly under a change of c, and that action-angle variables can be defined in 
these regions. In general there can be an arbitrary number of disjoint component manifolds 
for one fixed c Even for a critical value there can exist non-critical components. We shall 
denote a non-critical connected component of M, by M,". For N = 2, critical components 
are equilibrium points, isolated periodic orbits, and separaaices. Note that a point x on 
a separatrix is, in general, not a critical point (the dimension of the tangent space is N), 
but there is a critical point on this component: the unstable periodic orbit. Therefore a 
separatrix is not a manifold. 

3. Liouvill+Amol'd theorem 

The Liouville-Amol'd theorem states: 

If an integrable Hamiltonian system has a compactt invariant manifold M,", then M," is 
an N-Torus TN. There exist angle variables which trivialize the flow, and which can be 
found by quadratures. In a neighbourhood of M," which does not contain critical points 
a new symplectic coordinate system-the action-angle v a r i a b l e w a n  be introduced 
[1,61. 

Since the constants of motion F, are in involution, all the flows gi form a commutative 
N-parameter group Gt := gfl . . .gg. For every flow gi there is a time ti,  so that 
t = ( t l ,  . . . , t N )  E R N .  The space EN is now considered as a commutative group and 
is used to define an action on M," by 

As G is commutative, we can reach any point on M,": since M," is a non-critical 
component we can locally reach any point X I  in the neighbourhood of xo with say G'l, 
using the local coordinate system generated by the flows gi. We can do this again, starting 
from e,, reaching any nearby x2 with Gh. and so on. Since G is commutative the final 
point then is x = G'xO, where T = Cti. The flows are complete, i.e. defined for all 
times, because M," is compact and non-critical; therefore we can reach any point on M,", 
and the map F(., xo) is surjective. Since M," is by assumption compact and RN is not, 
the map cannot be injective: there must be times for which the corresponding group action 
maps xo onto itself. They form the so-called stationary subgroup of RN for any fixed xo. 

L = (t  E IWN 1 GtXO = xo) (6) 

where L is independent of xo because the flows commute. Since dim(M,") = dim(RN) = N 
we must have dim(L) = 0, thus L is a discrete subgroup of RN (it is commutative since G 
is), and therefore it is generated by N linearly independent vectors l ; ,  

t If, instead of compactness. completeness of the flows on M ,  is assumed, one can show that, instead of ton, one 
obtains cylinders Tk x 
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Figure 2. The same toms a.s shown in figure I-using the same projection-covered by a grid 
of coordinate lines of the angle variables: 10 coordinate lines of (left) and 30 coordinate 
lines for 1p1 (right) are shown. These coordinate lines can also be viewed as the orbis of 3 Row 
given by a linear combination of lhe Rows shown in Rgure I. We determine angle variables and 
thus actions by numericdly calculating ibis msformation. See figure 3 for the preimages of 
these lines in Rz. 

and forms a lattice in RN since lattices are the only discrete subgroups of R". To complete 
the proof we transform the generators li of L into the generators (unit basis vectors) z; of 
EN by a linear change of coordinates, 

l j  = AZj A = (ti  . . . I N )  E R N x N  . (8) 

We have thus constructed a diffeomorphism that maps the N-torus TN = RN/ZN to M,". 
Less formally, the above procedure can be viewed like this: the t give a local coordinate 

system. The coordinate lines are given by the integral curves of the flows (see figure 1). 
Since the flows commute, almost every linear combination of them also gives a local 
coordinate system. These coordinate systems can be turned into a global one by making 
each new coordinate line close on itself. This is achieved by the above transformation 
matrix A.  Instead o f t  we use A-'t as coordinates. Since each new coordinate line is a 
circle S ' .  it is natural to measure length in radians, thus introducing 

(o = 2nA-'t (9) 

as new ,coordinates. In figure 2 the coordinate lines 'pi ('pi = constant, V j  # i) are 
shown. Compare these to the coordinate lines ti which are, of course, the solutions of 
our Hamiltonian equations shown in figure 1. The coordinate lines of (oi can be viewed as 
a flow q j j  expressed in the t coordinates as (introducing the curve parameter r )  

with the unit vector ei in R". 
Every coordinate line qc is an irreducible path y, around the torus. It can be constructed 

by using the generators l i  of L which tell us which flows to integrate for what times if we 
are to go around M," .once, and they give us N different ways to do this. 
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New constants of motion can now be chosen in a way that they generate the Rows that 
evolve on the coordinate lines vi. These are the actions that are given by measuring the 
symplectic area of the torus 

One usually proceeds to show that a generating function exists which achieves the 
transformation to these canonical variables. In our context, however, we are done. Having 
constructed the paths yi we can evaluate the path integral numerically and thus compute the 
actions. 

On a given torus we can now express the original flows, especially the Hamiltonian 
flow, in the angle variables and obtain the frequencies. By definition, we get the differential 
equation for the flow corresponding to Fi in the t coordinates 

- d' = 6.. with solution gf to  = to + eir . d r  " 
If we transform to angle variables we find 

gfipO==++zA-'eir. (13) 

d = w = 2.rcA-'et . (14) 

In particular, we obtain for the time derivative of the angle variables generated by the 
Hamiltonian ( H  = F ] )  

The lattice contains all the information about the frequencies, e.g. for N = 2 we obtain 
explicitly the rotation number s 

Besides the natural interest of physicists in frequencies, they are also useful for the graphical 
display of the energy surface in the space of action variables, as they are by definition normal 
to that surface. 

Note that the group action G defines a map from the fundamental cell to the torus and 
thus gives an explicitly computable paramebic representation of that surface. 

4. Calculating actions 

The proof shows that the problem of finding the paths is equivalent to finding generating 
vectors Zi of the lattice L in t-space. To do so we introduce a metric d on phase space P 
and define a map D which measures the distance from xo to Gtso in phase space 

D,, : RN + R 
t H d(so ,  Gtxo) 

for any fixed 10. A Hamiltonian system does not have a natural metric associated with 
it in phase space. For our purpose we are free to chose any metric, e.g. the Euclidean 
one. By definition of L we have D,,(t) = 0 for t E L.  Thus we need to find the 
zeros of D ( t )  in RN.  Since L does not depend on 10, the zeros of D do not depend 
on it and we omit the index XO. We only need to find N zeros li that are linearly 
independent, and form a basis of the lattice L.  There are different sets of generators 
that produce the same lattice. All these generators can be transformed into each other 
via matrices from S L N ( Z ) ,  the N x N mabicices with det = I and coefficients in Z. 
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Any set of generators A defines a valid set of action-angle variables. Some possible 
rules for the selection of a specific fundamental cell for N = 2 are presented in the next 
section. 

Finding minima in N dimensions is a formidable numerical problem. We can, however, 
use the following simplification which reduces the computation time for the function 
evaluation considerably. 

Consider a zero of D: 
0 = D ( t )  = d(X0, g$ . . .g:xo) 

I, t jxo =g$ ...g, xo 
0 gNfNx0 = g::; . . . g; xo (17) 

* O  = d(giyxo, . . .g:xo). 
For N = 2 this means that we integrate the Row of = H forward in time and the flow 
of the second constant of motion FZ backward in time until we find an intersection of the 
two trajectories. 

In general the function 

D'(t1,fZ) := d(gi'NxO,g$~'l . . . g ~ x o )  (18) 
will not be periodic, but the zeros of D' still are. D' does depend on xo but its zeros do 
not. For N = 2 we can picture D'(t)  as a contour plot (figure 3). 

Let n be the number of points calculated by the ODE solver on a typical trajectory. By 
the above trick the dependence of computing time on n reduces from quadratic to linear for 
N = 2, and, in general, by one order. 

In practice we are interested in the action integrals not only for one torus but for a 
family of neighbouring tori which is obtained by varying some of the values of the integrals 
without crossing any critical values and thereby continuously deforming the torus. A typical 
example would be to keep the energy fixed and generate an N - 1 parameter family of ton 
by changing the values of the remaining integrals. The energy surface can then be obtained 
numerically in terms of the action variables. 

We use the following continuation method: given a set of fundamental paths [ lL  1 of one 
torus r, where the base 10 E r was used for the determination of the paths, we seek the new 
paths ( I ; ]  on a neighbouring torus r' which are determined using the base xb = 10 + 8x0 
with 8x0 small. The two tori, as well as the paths, will be related to each other by some 
continuous deformation. 

For a particular time vector I E [Zi] we want to compute I' = I + At such that 
G"zb = xb. Defining y = G'rb we find as the determining equation for At 

(1% 
with IAtl minimal. Interpreting the difference A y  := y - xb as a vector in tangent space 
at xb we can approximate for 6x0 small (and therefore also At small) (equation (19)) up 
to first order in A t  by 

At ! - G- x o - y  

M A t  -Ay  (20) 
where M = ( V I ,  . . . , I J N ) ~ ~ ;  is an 2N x N matrix whose columns are the vector fields 
at xb. Of course equation (20) cannot be solved exactly since the system of equations 
is overdetermined and usually A y  is not a vector in the tangent space at xb. We 
therefore use singular value decomposition as an approximate solution scheme which 
yields the best approximate solution for At, i.e. IM At + Ay1 = min (see for instance 
~71). 
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Figure 3. The function D' on (tx , r~)-space as a contour plat. Note that the zeros form a 
periodic lattice L while the function itself is only 'almost periodic'. G maps the fundamental 
region indicated onto the toms. The lanice corresponds to the toms shown in figures 1 and 
2. Two comers of the fundamental cell give the transformation from t to yn coordinates. The 
orbits (respectively coordinate lines) I, shown in figure 1 correspond to the fK- and rwaxis of 
this picture. The coordinate lines yn, (respectively orbits) shown in figure 2 correspond to lines 
parallel to the edges of the fundamental pdlelogram. 

We can now construct a Newton-type iteration scheme to determine the exact At  
numerically. Explicitly 

(0) xb = I o  + 6x0, n = 0, At0 = 0, M = (U,, . . . , u,)lZ; 
I+At I 0 )  Y"+I = G "x0 

(ii) AY"+] = Y"+I - zb 
(iii) 'solve' MAt,+ l  = -Ayn+,  
(iv) continue with step (i) until IAyntl I or lAtn+, I is less than some predefined value. 

By construction, the points y,, stay on the invariant torus, which is specified by xb. and 
the scheme will converge onto the correct At if 6x0 is chosen small enough. We therefore 
control the method by choosing 6x0 appropriately. Consider 

(21) 1 6 5  % -(G'xo) 6x0 (,I 
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where &(G'.ZO) is the Jacobian matrix of the flow map which is obtained by solving the 
variational equation. 

where 

Z ( 5 )  = GlrZo, (23) 
With the approximation 4 . ~ 0  % 8Zo - Sso we can solve (20) in order to find some first 

estimate for At0 used in the iteration scheme. Since only linear equations are involved we 
can easily control the magnitude of the changes Ay and 4 to  by adjusting the norm of azo. 

5. Calculating energy surfaces for N = 2 

We restrict the discussion to the case of N = 2, considering one of the integrals to be the 
energy which is held constant at a non-critical value. The goal is to determine the energy 
surface in terms of action variables. 

To calculate the energy surface of any system we have to make sure that we choose 
initial conditions xo for the action calculation on every torus in P. For systems with two 
degrees of freedom an efficient way to do this is to start on a Poincard surface of section. 

Assume that i t  is possible to find a Poincart surface of section that contains every torus 
of a given energy surface. The Poincar.5 surface of section itself can be obtained as a contour 
plot of the second constant of motion restricted to the intersection of the energy surface and 
the Poincar.5 surface of section-without doing any integration. The separatrices divide the 
surface of section into regions. In each of these regions we can introduce a smooth set of 
actions (see figure 4). Define a path that transversally crosses every torus of that region. Let 
the path start and terminate at the periodic orbits inside or at the border of this region. Let 
us consider these paths as the edges of a graph. At the endpoints of each edge (i.e. at the 

0.4 

0.2 

PI 
0.0 

-0.2 

-0.4 

4.6 
4.6 .0.4 -0.2 0.0 0.2 0.4 0.6 

q, 

Figure 4. The Poincare surface of section of the Walker and Ford Hamiltonian. with coordinates 
(qz. p2)  corresponding to (n. 52) for energy E = 0.2 and a = 0.1. The sepantrices and the 
critical points ri are shown. The pictures of the energy surfaces (figure 6) are obtained by 
sunning the palhs ci in the regions Ri as indicated. We have chosen ci and c2 as described in 
the text. CI. however, is chosen differently: it conneck r3 and the separalrix. thereby crossing 
all tori in region R )  transversally. On the right the corresponding Fomenko graph is shown. 
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vertices of the graph) there are stable or unstable periodic orbits. If there is a stable periodic 
orbit then the graph has an endpoint there. If there is an unstable periodic orbit then the 
graph has a node and can branch into any number of edges. Draw the graph in such a way 
that points corresponding to the same value of the second constant of motion have the same 
height. The graph constructed in this way is actually a topological invariant of an integrable 
Hamiltonian system, as is shown by Fomenko [S, 9J. The energy surface in P can be pictured 
as the graph with a torus attached to every point of the edges. Fomenko also classifies the 
possible invariant sets at the vertices of the graphs, Corresponding to the critical values of F. 
In general, they can only be of the following types: stable periodic orbits (minimax circles), 
minimax tori, unstable periodic orbits (orientable or non-orientable saddles) or minimax 
Klein bottles. Fomenko shows this assuming the integrals to be so-called Bott integrals, 
i.e. the critical points of the integrals form non-degenerate critical smooth submanifolds of 
the energy surface. We will also assume this in the following. For the determination of the 
actions we use paths in the Poincar6 surface of section which are equivalent to the edges 
of the graphs for the continuation method described in the previous section. 

In order to start the continuation algorithm we need two time vectors 11 and 12 which 
generate the fundamental lattice for one torus oneach edge, On a given Liouville torus these 
generators are only defined up to some linear transformation from SLN(Z) .  This is reflected 
by the fact that action-angle variables are not defined uniquely. We are therefore free to 
use any two generating vectors found by the method described in the previous section. The 
obtained actions can then later be transformed via some matrix from SLN(Z) to some more 
suitable form. 

Often we can do becter than this, however. The energy surface around stable periodic 
orbits looks like a full torus ( D 2  x SI) which is foliated by the Liouville tori. One 
fundamental path around such a torus can therefore be chosen in such a way that it lies in 
a plane locally normal to the periodic orbit and collapses onto a point when the torus is 
'deformed' into the periodic orbit. This allows a unique definition of that path. 

A stable periodic orbit y is a critical manifold. Therefore there exist some AH, h~ such 
that 

H R Dullin and A Wttek 

v := ).HUH + A K V K  = 0 (24) 

on y .  where VH and V K  are the vector fields corresponding to the Hamiltonian and the second 
constant of motion, respectively. In a small neighbourhood of I* E y ,  v is approximately 
given by its linearization at z*, i.e. by ((a/ar)v)lz.. Two of the eigenvalues of ( (a /as )v )  lz* 
are 0 (corresponding to eigenvectors parallel to VH and parallel to VH) and two are purely 
imaginary (fim-corresponding to the flow on the torus). For a torus close to y which 
has a base point so = s* + 61, where 6z is a real valued combination of the complex 
eigenvectors, we therefore find that to first order in 16rl one of the generators is given by 

I ,  = (2z hH/w, 2rr A K / w )  with C " X ~  = eo. (25) 

The other generator cannot uniquely be defined like this, therefore we use the following 
method. Determine the simple period of the periodic orbit, i.e. determine the minimal 
T > 0 in &e* = I*. Then compute the eigenvalues of the Jacobian of the linearized Row 
(a/as*)(gLz*). Two of them are equal to 1, the other two are complex conjugated lying 
on the unit circle (or, = exp(i&), cuz = exp(-i&)). Now using the results for the first path, 
choose t such that (6 + tw)  mod 2n = 0. The second generator for the base IO is then 
given by 

12 = (T + I).H, fhK)  With GhIO = eo. (26) 
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For unstable periodic orbits the situation is different. A path which locally lies in a plane 
normal to the periodic orbit y is diecult to consmct explicitly, because it will approximately 
follow the separatrix and the length of its generator will depend on global information. As 
before, there exist numbers AH. A K  such that U := AHUH + A K U K  = 0 on y .  The relevant 
eigenvalues of the linearized vector field at x* E y are real, i.e. .tp. As the torus gets 
closer to the separatrix we therefore expect a logarithmic divergence of the generator for a 
path normal to the periodic orbit: 

= ( Z H ,  f K )  -+ (AHt.  h ~ t )  t -+ CO. (27) 
The asymptotic behaviour in the plane ( t H ,  t K )  is therefore given by the slope t K / t H  = 
L . K / ~ H .  Choosing the generator with this asymptotic behaviour also ensures that the 
symplectic area enclosed by the path stays finite. A path which has a component parallel 
to the periodic orbit would yield, as a limiting behaviour, a path which follows the periodic 
orbit a number of times n ,  where n goes to infinity as the periodic orbit is approached. 

The second generator can be constructed such that its corresponding path smoothly 
approaches the periodic orbit asthe torus approaches the separahix. In the case of a non- 
orientable saddle the path actually provides a double covering of the periodic orbit because 
the periodic orbit is inverse hyperbolic. As in the case of a stable periodic orbit we determine 
the simple period T of the periodic orbit (in case of a non-orientable saddle we have to 
take twice the period). Compute the eigenvalues of the linearized flow map: the relevant 
ones will be 011 = exp(b) and 012 = exp(-b). The second generator is then given by 

(28) 
This construction ensures that the fundamental paths can be ‘continuously’ deformed across 
separahices (the first one only in its asymptotic behaviour, though). It also naturally 
produces a singularity in the frequencies, one of them approaching zero as the torus 
approaches the separatrix. 

Because the constructions of the generators are only valid in some possibly small neigh- 
bourhood of the periodic orbits, the iteration scheme of the previous section should be 
applied to correct the results to their proper values. Often the Fomenko graph will have a 
stable periodic orbit on one end of an edge and an unstable periodic orbit on the other end. 
One usually has to decide which set of generators or which particular combination to use 
because, in general, the two sets do not have to agree on both vertices. For example, in our 
numerical studies it often happened that the path transverse to the stable periodic orbit trans- 
formed into the path approaching the sepmtrix agd the path parallel to the unstable periodic 
orbit became a path parallel to the stable periodic orbit. This resembles the behaviour one 
would expect interpreting the structures one sees in a Poincar6 surface of section naively. 

The above method of choosing the fundamental cells also agrees with an intuitive picture 
one has in mind when defining action variables. We would like to define action variables 
in such a way that one of the actions vanishes on a stable periodic orbit. In case the energy 
surface contains only two stable periodic orbits as critical manifolds, which, for example, 
happens when the low-energy limit corresponds to a system of two harmonic oscillators, 
one of the action variables should vanish on one periodic orbit and the other one should do 
so on the other periodic orbits. The generators are uniquely defined by this choice and also 
serve as a natural starting point when the energy is changed. 

6. An example 

In order to show the applicability of our method we have chosen a Hamiltonian showing 
a 2-2 resonance as described in Walker and Ford [3], which gives rise to a phase space 

12 = (T - AHB/@,  - A ~ b / p ) .  
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divided by separatrices. For this system the actions, and therefore the energy surfaces, can 
be determined by other means and then compared to the results of OUT method. 

The Hamiltonian is given by 

H = J I  + J2 - J: - 3.31 Jz + J,' + O J I  Jzcos(2rpl - 2%) ( 2 9 )  

where Jj and (oi are the action-angle variables of the unperturbed system (a = 0) and are 
related to Cartesian variables via 

qi = m c o s r p ,  pi = -&sin(o;. (30) 
Therefore we only allow Jj 2 0. As in the discussion of Walker and Ford, the energy will 
be restricted to the range 0 E < Ec, where E, is the lowest critical energy. Assuming 
that 0 < o < a, we find that E,  is given by ( 3  + a)/(13 + 60 +az). We also choose the 
branch of the allowed energies for which the J,  tend to zero as the energy vanishes. 

With 01 > 0 the Ji are no longer constants of motion. However, the system is still 
integrable, and, in addition to the Hamiltonian, the combination I = J I  + Jz is easily 
identified as a new constant of motion. Using a suitable canonical transformation the 
Hamiltonian is separable, with I already being one of the new actions. The second action 
can then be found explicitly by quadrature, and the integrals can be solved numerically 
or-after some manipulations-using elliptic integrals. 

In order to employ our method we follow the program outlined above. We find that 
a Poincark surface of section with r p ~  = 3 x 1 2  gives a complete overview of phase space 
and its foliation by tori for all allowed energies (the alternative M = 3 n / 2  does not). As 
illustrated in figure 4, phase space is split into four regions, each of them centred around 
a simple stable periodic orbit. The central periodic orbit rl as well as the two (distinct) 
periodic orbits r,, r4 intersect the surface of section transversally. The fourth periodic 
orbit rz does not intersect transversally but lies entirely in the surface of section; it is the 
boundary of the energy shell in this section. The four regions around the stable periodic 
orbits are separated by separatrices. 

In the Poincark surface of section the critical points of the constant of motion I are 
given by VI = O-corresponding to rank(VH, V I )  < 2 in phase space. In order to find 
the central periodic orbit and the periodic orbit on the boundary by this method, we have 
to resort to the original variables ( p i ,  qi )  because the transformation from ( p i ,  qj) to the 
action-angle variables ( J i ,  (oi) is not invertible at these points. We find the following distinct 
critical points: 

r I :  J ~ = O  
r2 : 0 < rpz < 2n (degenerated to a line) 

- 1 + m  
2 

52 = 

r3,4 :M = 0, IT 

( 1  +0)(3 + o r  + ,/9 +60 +az + E ( 3 9 +  310 +9u2 +a3)) 
52 = 

(39 + 31a + 9a2 + (13) 

r5.6 :(o2 = r / 2 ,  3 x 1 2  

( 1  -0)(3 -a + ,/9 - 60 +az + E(39 - 310 +9aZ -a3)) 
(39 - 310 + 9ci2 - 03) 

J2 = 

where rl, rz. I'3 and r4 are stable periodic orbits while r5 and r6 are unstable periodic 
solutions. The regions centred around r3 and r4 are equivalent, i.e. they contain the same 
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Figure 5. The energy surface of the 
Walker and Ford Hamiltonian for E = 
0.2 and [I = 0.1. The resulfs of a 
standard (circles) and our comoutational 

0.w 

method (crosses) are both shown. The 
0.00 0.10 0.20 0.30 0.40 three pieces of the energy surface -0.05 

1, correspond to the Wee regions Ri 

Figure 6. The energy surfaces of the Walker and Ford Hamiltonian for an energy range 0.01 
to 0.22 in steps of 0.01. Figure (a) shows the unperturbed case, 01 = O-the energy surface is 
smooth. For (b) ,  [I = 0.1 is chosen. As in figure 5,  each energy surface is split in three pieces. 

type of ton and allow the introduction of the same kind of action-angle variables. In the 
following only one of these regions will be considered. 

In order to find initial conditions on all tori we introduce three paths in the regions R I ,  
R2 and R3: cl  = rsrl ,  cz = rsrz and c3 = r5r3. They are not necessarily straight, but 
have to be transversal to all tori crossed. Instead of joining the critical points themselves, 
we may join critical points corresponding to stable periodic orbits and separatrices carrying 
the same critical values as the unstable periodic orbits (compare to figure 4). 

Using the procedures outlined above we then determine the actions 11 and 12 for a given 
energy. For convergence criteria in phase space we use the Euclidean metric in the p i ,  qi 
variables. Note that we do not use the knowledge that I is already an action and therefore 
generates closed trajectories by itself. However, this effect is unavoidable for separable 
systems, which we need here for comparison. To illustrate the method, I is treated like any 
other constant of motion. 

Figure 5 contains the results from direct quadrature and from our method for E = 0.2 
and 01 = 0.1. For comparison the results were transformed by appropriate matrices from 

- - - 
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S L N ( Z ) .  They agree perfectly well. Although the actions are discontinuous at the bound- 
aries of the regions there are sum rules satisfied that can be read off the Poincark surface of 
section: h(r5 e R2) = /z(F5 E R I )  - 2/2(r5 E R3).  In figure 5 action I2 of region R3 is 
multiplied by -2 to make this relationship more obvious. A comprehensive picture of the 
energy surfaces in action space for different energies and parameters is given in figure 6. 

7. Conclusion and outlook 

Our method is an efficient recipe to calculate action variables, frequencies and corresponding 
energy surfaces by purely numerical methods. Furthermore the tori of integrable systems are 
easily parametrized. Besides giving the correct results for the trivial example of a separable 
system, it has also proved to be applicable to the complicated case of Kovalevskaya's top [5 ] .  

Currently we have implemented the algorithm for the case of two degrees of freedom; a 
thiid degree of freedom is allowed if one variable is cyclic and the corresponding constant 
of motion is an action. The algorithm is easily extended to the truly threedegree-of-freedom 
case, although with a significant increase in computing time for the generation of irreducible 
paths. Also, the one-dimensional scan of the ton, which corresponds to scanning the values 
of the second constant of motion in the different regions, becomes a two-dimensional scan 
in the two constants of motion. 

In the current state, a good knowledge of the bifurcations in phase space (e.g. in the 
form of Fomenko graphs) has to be supplied. Future work is directed towards the complete 
automation of the method, in the sense that for two degrees of freedom the Fomenko graph 
corresponding to the system is generated numerically. Complicated phase-space topologies 
could then be identified and analysed. The method can then be applied as a black-box 
function to experimentally relevant systems, and, for example, serve as a basis for the 
calculation of energy levels in a semiclassical approximation. 
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